PRODUCT INFORMATION

NAME OF THE MEDICINE

LOVIR TABLETS

Active. aciclovir

Chemical Structure:

![Chemical Structure Image]

Chemical name: 9-((2-hydroxyethoxy) methyl) guanine
Molecular formula: C$_8$H$_{11}$N$_5$O$_3$
Molecular weight: 225.2
CAS No: 59277-89-3

DESCRIPTION

Synthetic acyclic purine nucleoside analogue. Chemical name: 9-((2-hydroxyethoxy) methyl) guanine. It is a white or almost white crystalline powder, slightly soluble in water, freely soluble in dimethyl sulphoxide, very soluble in ethanol (96 per cent). It dissolves in dilute solutions of mineral acids and alkali hydroxides.

Excipients – magnesium stearate, microcrystalline cellulose, sodium starch glycollate, pregelatinised maize starch, colloidal anhydrous silica.

PHARMACOLOGY

Actions – Antiviral agent.

Microbiology

Aciclovir is an antiviral agent which is active in vitro against Herpes simplex virus (HSV) types I and II and Varicella zoster virus (VZV), the latter being considerably less sensitive. The relationship between the level of in vitro sensitivity of herpes viruses to aciclovir and clinical response to therapy has not been adequately established. Development of resistance by HSV to aciclovir has been documented. Aciclovir needs to be phosphorylated to the active compound, aciclovir triphosphate, in order to become active against the virus. Such conversion is very limited in normal cells and, in addition, cellular DNA polymerase is not very sensitive to the active compound. However in infected cells, HSV or VZV coded thymidine kinase facilitates the conversion of aciclovir to aciclovir monophosphate, which is then converted to aciclovir triphosphate by cellular enzymes. Aciclovir triphosphate acts as an inhibitor of and substrate for the herpes specified DNA polymerase, preventing further viral DNA synthesis.
Pharmacokinetics

Aciclovir is only partially and variably absorbed from the gut. Estimated bioavailability following a dose of 200mg is about 20% and decreases to about half of this with an 800mg dose. Mean steady state peak and trough concentrations during dosage of 200mg administered every four hours were 0.49 (range 0.47 to 0.54) microgram/mL and 0.31 (range 0.18 to 0.41) microgram/mL respectively, and after 800mg every six hours were 1.43 (range 0.66 to 1.8) microgram/mL and 0.55 (range 0.14 to 1.10) microgram/mL respectively. Both peak and trough levels following repeated doses in adults over 60 years of age are considerably higher than in young adults, apparently because of the reduced renal function in the elderly.

Following oral administration of 200mg aciclovir as Lovir 200mg, the mean plasma half-life of aciclovir in volunteers with normal renal function was 3.4 hours. For volunteers dosed with 800mg aciclovir as Lovir 800mg, the mean plasma half-life was 7.2 hours. Approximately 60% of the drug is excreted unchanged by the kidney by glomerular filtration and tubular excretion. When aciclovir is given after probenecid, the terminal half-life and the area under the plasma concentration-time curve are extended. 9-carboxymethoxymethylguanine is the major metabolite of aciclovir and accounts for 10 to 15% of the dose excreted in the urine following intravenous administration.

In children aged 0 to 3 months the terminal plasma half-life is approximately 4 hours. However, experience is insufficient at present to recommend therapy for this age group.

Because aciclovir is excreted mainly by the kidneys, its total body clearance in the elderly (>60 years of age) declines due to decreased renal function. The terminal half-life of aciclovir in the elderly is approximately 4.6 hours. It is important to maintain adequate hydration in elderly patients taking high oral doses.

In patients with chronic renal failure, the mean terminal half-life following intravenous administration was found to be 19.5±5.9 (standard deviation) hours. The mean aciclovir half-life during haemodialysis was 5.7 hours. Plasma aciclovir levels dropped approximately 60% during dialysis.

Studies have shown no apparent changes in the pharmacokinetic properties of aciclovir or zidovudine when both are administered simultaneously to human immunodeficiency virus (HIV) infected patients.

Dosage adjustment for Lovir tablets is recommended in renal impairment (see Dosage and Administration). Plasma protein binding is low (9 to 33%).

INDICATIONS

Adults

Treatment of first episode (primary or nonprimary) genital herpes and the management of recurrent episodes of genital herpes in certain patients.
Treatment of acute attacks of *Herpes zoster* (shingles) when the duration of rash is less than 72 hours. The management of patients with advanced symptomatic HIV disease (CD4+ counts < 150 x 10^6/L).

Genital herpes. Initial episodes. The duration of viral shedding is reduced very significantly; the duration of pain and time to healing are also reduced. The promptness of initiation of therapy and/or the patient’s prior exposure to *Herpes simplex* virus may influence the degree of benefit from therapy.

Intravenous aciclovir should be considered in patients in whom prostration, CNS involvement or inability to take oral medication requires hospitalisation and initiation of more aggressive management.

Aciclovir does not prevent the establishment of latency in initial episodes.

Recurrent episodes. Suppression. In patients with frequent recurrences, suppressive therapy prevents or reduces the frequency and/or severity of recurrences in a high proportion of patients. Abortive episodes (prodromal symptoms without vesicle formation) and occasional breakthrough episodes may, however, continue to occur during suppressive therapy.

Suppressive therapy is not considered appropriate for patients in whom attacks are mild, last for short periods and/or occur infrequently (eg. less frequently than once a month).

Aciclovir is effective only during the period of intake and has no residual beneficial effect. It does not eradicate the body viral pool. Following cessation of therapy, the time to onset of recurrences, their frequency, severity and duration remain generally unaffected. Some patients may experience increased severity of the first episode following cessation of therapy.

The risk of inducing viral resistance and of potential long-term adverse effects (see Precautions, Carcinogenesis, mutagenesis and impairment of fertility) should be weighed carefully before initiating suppressive therapy.

Asymptomatic cases of genital herpes are known to shed the virus with a high frequency. However, at present only limited data are available on the extent and frequency of viral shedding in patients receiving suppressive therapy. Therefore, if therapy with aciclovir tablets is being used in the prenatal period (see Precautions, Use in pregnancy), it should not be assumed that viral shedding has ceased. Pregnancy should be managed according to considerations normally applicable to patients with genital herpes.

In view of the complex and variable natural history of genital herpes, suppressive therapy should be interrupted periodically to ascertain whether the disease has undergone spontaneous change in frequency or severity (see Dosage and Administration).

Intermittent treatment. For certain patients, intermittent short-term treatment of recurrences is effective. Although the average patient would derive limited benefits from such treatment, a minority of patients who have experienced severe, prolonged recurrent episodes or recurrences complicated by eczema, burns or immunosuppression may experience more appreciable benefits. In those patients, intermittent treatment may be more appropriate than suppressive therapy when recurrences are infrequent.
Herpes zoster. In controlled trials aciclovir tablets were shown to reduce acute pain and rash progression in adult patients of all ages with *Herpes zoster* in whom the duration of rash was less than 72 hours. Aciclovir tablets appeared to be relatively less effective in younger adults, in whom *Herpes zoster* is generally a milder disease.

In ophthalmic zoster, oral aciclovir has been shown to reduce the incidence of stromal keratitis and both the incidence and severity of anterior uveitis, but not other ocular complications or acute pain.

Note: In immunocompetent patients with very severe *Herpes zoster*, immunocompromised patients, or in patients with impaired absorption from the gut, consideration should be given to intravenous dosing.

Advanced symptomatic HIV disease. Studies have shown that oral aciclovir reduced mortality in patients with advanced HIV disease (CD4⁺ counts < 150 x 10⁶/L). In addition, oral aciclovir provided effective prophylaxis for herpes virus disease. No significant effect was seen on the prophylaxis of cytomegalovirus (CMV) disease or Epstein-Barr virus (EBV) disease.

CONTRAINDICATIONS

Known hypersensitivity to aciclovir or valaciclovir.

PRECAUTIONS

Resistant strains have been isolated *in vitro* and in animals following treatment with aciclovir. HSV strains resistant *in vitro* to aciclovir have also been isolated from immunocompromised as well as immunocompetent patients receiving aciclovir for *Herpes simplex* infections. Therefore, the potential for the development of resistant HSV strains in patients treated with aciclovir should be borne in mind. The relationship between the level of *in vitro* sensitivity of herpes viruses to aciclovir and clinical response to therapy has not been adequately established.

As aciclovir has been associated with reversible encephalopathic changes, it should be used with caution in patients with underlying neurological abnormalities, significant hypoxia or serious renal, hepatic or electrolyte abnormalities. It should also be used with caution in patients who have manifested neurological reactions to cytotoxic drugs or are receiving interferon or intrathecal methotrexate concomitantly.

Animal studies indicate that at high does aciclovir is cytotoxic.

Impaired renal function: The dosage should be adjusted in patients with renal impairment (see Dosage and Administration).

Use in the elderly: It is important to maintain adequate hydration in elderly patients taking high doses of aciclovir tablets for the treatment of *Herpes zoster*.

Carcinogenesis, mutagenesis, impairment of fertility.

Mutagenesis. Aciclovir was clastogenic in Chinese hamster cells *in vivo*, at exposure levels also causing nephrotoxicity (500 and 1000mg/kg parenteral dose). There was also an
increase, though not statistically significant, in chromosomal damage at maximum tolerated doses (100 mg/kg) of aciclovir in rats. No activity was found in a dominant lethal study in mice or in four microbial assays. Positive results were obtained in two of seven genetic toxicity assays using mammalian cells in vitro (positive in human lymphocytes in vitro and one locus in mouse lymphoma cells, negative at two other loci in mouse lymphoma cells, and three loci in a Chinese hamster ovary cell line).

The results of these mutagenicity tests in vitro and in vivo suggest that aciclovir is unlikely to pose a genetic threat to humans at therapeutic dose levels.

Carcinogenesis. Aciclovir was positive in one of two mouse cell transformation systems in vitro. Inoculation of the transformed cells into immunosuppressed mice resulted in tumours. These data are suggestive of an oncogenic potential. However, the validity of this type of study is unclear.

Lifetime oral dosing studies in mice and rats gave no evidence of tumorigenicity but in these species the absorption of oral aciclovir is poor and possibly self-limiting.

Effects on fertility. There is no experience of the effect of aciclovir on human fertility. The results of studies in animals indicate that aciclovir should have no effect on fertility in humans at therapeutic doses. In a study of 20 male patients with normal sperm count, oral aciclovir administered at doses of up to 1g per day for up to six months has been shown to have no clinically significant effect on sperm count, motility or morphology.

Use in pregnancy: (Category B3)

Animal studies show that aciclovir crosses the placenta readily. Aciclovir was not teratogenic in the mouse (450 mg/kg/day orally), rabbit (50mg/kg/day subcutaneously and intravenously) or rat (50mg/kg/day subcutaneously) when dosed throughout the period of major organogenesis. This exposure in the rat resulted in plasma levels 11-fold the mean steady state peak concentration in human doses of 800mg every four hours. In additional studies in which rats were given three subcutaneous doses of aciclovir 100mg/kg on gestation day 10, fetal abnormalities, eg. head and tail anomalies, were reported (exposure was 63-fold human levels after 800mg every four hours).

There have been no adequate and well controlled studies concerning the safety of aciclovir in pregnant women. It should not be used during pregnancy unless the benefits to the patient clearly outweigh the potential risks to the fetus. If suppressive therapy is used in the perinatal period, it should not be assumed that viral shedding has ceased, or that the risk to fetus/neonate has decreased. Pregnancy should be managed according to considerations normally applicable to patients with genital herpes.

Use in lactation:

Limited human data show that aciclovir does pass into breast milk. Aciclovir should only be administered to breastfeeding mothers if the benefits to the mother outweigh the potential risks to the baby.

Use in children:
Safety and effectiveness in children have not been established.

Interactions with other medicines

Probenecid increases the aciclovir mean half-life.

Aciclovir is eliminated primarily unchanged in the urine via active renal tubular secretion. Any drugs administered concurrently that compete with this mechanism may increase aciclovir plasma concentrations. Probenecid and cimetidine increase the AUC of aciclovir by this mechanism, and reduce aciclovir renal clearance. However, no dosage adjustment is necessary because of the wide therapeutic index of aciclovir.

In patients receiving Lovir, caution is required during concurrent administration with drugs which compete with aciclovir for elimination, because of the potential for increased plasma levels of one or both drugs or their metabolites. Increase in plasma AUCs of aciclovir and of the inactive metabolite of mycophenolate mofetil, an immunosuppressant agent used in transplants, have been shown when the drugs are coadministered. However, no dosage adjustment is necessary because of the wide therapeutic index of aciclovir.

In patients over 60 years of age, concurrent use of diuretics increases plasma levels of aciclovir very significantly. It is not known whether a similar effect occurs in young adults. In patients receiving zidovudine no significant overall increase in toxicity was associated with the addition of aciclovir. No data are available on interactions between aciclovir and other antiretroviral therapies.

Other drugs affecting renal physiology could potentially influence the pharmacokinetics of aciclovir.

ADVERSE EFFECTS

Aciclovir tablets appear to be generally very well tolerated. Adverse effects are usually mild. However, the following have been noted.

Reversible neurological reactions, notably dizziness, confusional states, hallucinations, somnolence and convulsions have occasionally been reported usually in patients with renal impairment in whom the dosage was in excess of that recommended or with other predisposing factors.

Short-term administration for genital herpes. Nausea and/or vomiting and headache were the most frequent adverse effects. Less frequent (<1%) reactions included diarrhoea, dizziness, anorexia, fatigue, oedema, skin rashes, leg pain, inguinal adenopathy, medication taste and sore throat. Occasional changes in hepatic enzymes and changes in haematological parameters were also noted.

Long-term suppressive therapy for genital herpes. Nausea and/or vomiting, headache, diarrhoea, vertigo and arthralgia were the most frequent adverse effects. Less frequent adverse effects included skin rash, insomnia, fatigue, fever, palpitation, sore throat, superficial thrombophlebitis, muscle cramps, pars planitis, menstrual abnormalities, lymphadenopathy, irritability, accelerated hair loss, depression and occasional increases in hepatic enzymes.
Herpes zoster. The most commonly reported adverse effect in clinical trials was gastrointestinal disturbance. Other reports included aching, chest pain, confusion, constipation, diarrhoea, giddiness, hallucinations, headache, insomnia, nausea, rash, shaking, taste disturbance, tremor, vertigo and malaise, vomiting and mental status alteration. Significantly, the overall incidence of side effects reported was the same in patients on placebo.

Advanced symptomatic HIV disease. In patients receiving antiretroviral therapy (mainly oral zidovudine), no significant overall increase in toxicity was associated with the addition of aciclovir. However, moderate increases in anaemia and neutropenia were seen in some studies in patients with advanced HIV disease.

The frequency categories associated with the adverse events below are estimates. For most events, suitable data for estimating incidence were not available. In addition, adverse events may vary in their incidence depending on the indication.

The following convention has been used for the classification of undesirable effects in terms of frequency: - Very common ≥1/10, common ≥1/100 and <1/10, uncommon ≥1/1000 and <1/100, rare ≥1/10,000 and <1/1000, very rare <1/10,000.

Blood and lymphatic system disorders
Very rare: Anaemia, leukopenia, thrombocytopenia

Immune system disorders
Rare: Anaphylaxis

Psychiatric and nervous system disorders
Common: Headache, dizziness, confusion, hallucinations, somnolence, convulsions,
Very rare: Agitation, tremor, ataxia, dysarthria, psychotic symptoms, encephalopathy, coma

The above events are reversible and usually reported in patients with renal impairment in whom the dosage was in excess of that recommended, or with other predisposing factors.

Respiratory, thoracic and mediastinal disorders
Rare: Dyspnoea

Gastrointestinal disorders
Common: Nausea, vomiting, diarrhoea, abdominal pains

Hepato-biliary disorders
Rare: Reversible rises in bilirubin and liver related enzymes
Very rare: Hepatitis, jaundice

Skin and subcutaneous tissue disorders
Common: Pruritus, rashes (including photosensitivity)
Accelerated diffuse hair loss has been associated with a wide variety of disease processes and medicines, the relationship of the event to aciclovir therapy is uncertain.

Rare: Angioedema

Renal and urinary disorders
Rare: Increases in blood urea and creatinine
Very rare: Acute renal failure, renal pain

Renal pain may be associated with renal failure

General disorders and administration site conditions
Common: Fatigue, fever

DOSAGE AND ADMINISTRATION

Lovir tablets may be dispersed in a minimum of 50mL of water, or swallowed whole with a glass of water.

Initial genital herpes. One 200mg tablet every four hours while awake, for a total of 5 tablets daily for ten days (total 50 tablets).

Chronic suppressive therapy for recurrent genital herpes. One 200mg tablet three times daily for up to six months. Many patients will, however, respond satisfactorily to one 200mg tablet twice daily. Occasional breakthroughs have been reported in patients receiving 2, 3, 4 or 5 tablets daily. Suppressive therapy is not indicated for all patients with recurrent genital herpes (see Indications). Therapy should be discontinued at the end of six months to ascertain whether any change has occurred in the natural course of the disease in the particular patient.

Intermittent therapy for recurrent genital herpes in certain patients (See Indications). One 200mg tablet every four hours while awake, for a total of 5 tablets daily for five days (total 25 tablets). Therapy should be initiated at the earliest sign or symptom (prodrome) of recurrence.

Herpes zoster in adults. 800mg five times daily at intervals of approximately four hours, omitting the night-time dose. Therapy should commence as early as possible after the onset of rash but definitely with 72 hours of the appearance of the rash. Treatment should be continued for seven days. For Herpes zoster ophthalmicus, the recommended duration of therapy is seven to ten days. Attention should be given to maintaining adequate hydration in elderly patients.

Advanced symptomatic HIV disease. 800mg four times daily at intervals of approximately six hours. The duration of treatment in the controlled trials was 12 months. Oral aciclovir was given in conjunction with oral zidovudine in most studies, at a range of doses. In a high percentage of the patients in the controlled trials, an initial zidovudine dose of 2g daily followed after four weeks by 1g daily was used. These doses are above the currently recommended dose of 600mg daily. The safety and effectiveness of oral aciclovir taken in conjunction with other antiretroviral therapies could not be assessed.

Acute or chronic renal impairment: No data are currently available on the kinetics of oral aciclovir in patients with impaired renal function. However, based on studies with
intravenous aciclovir infusion and theoretical considerations, the following dosage adjustments are recommended.

Genital herpes. For patients with creatinine clearance $<10\text{mL/minute/1.73m}^2$, a 200mg dose every twelve hours is recommended.

Herpes zoster, advanced symptomatic HIV disease. For patients with creatinine clearance in the range 10 to 25mL/minute/1.73m2, it is recommended to adjust the dosage to 800mg three times daily (approximately every eight hours). For patients with creatinine clearance $<10\text{mL/minute/1.73m}^2$, 800mg twice daily (approximately every twelve hours).

OVERDOSAGE

There is little experience concerning overdosage with aciclovir. Adverse effects from overdosage may be expected to follow the pattern listed under Adverse Reactions.

Aciclovir can be removed from circulation by haemodialysis.

Symptoms & signs: Aciclovir is only partly absorbed in the gastrointestinal tract. Patients have ingested overdoses of up to 20g aciclovir on a single occasion, usually without toxic effects. Accidental, repeated overdoses of oral aciclovir over several days have been associated with gastrointestinal effects (such as nausea and vomiting) and neurological effects (headache and confusion).

Overdosage of intravenous aciclovir has resulted in elevations of serum creatinine, blood urea nitrogen and subsequent renal failure. Neurological effects including confusion, hallucinations, agitation, seizures and coma have been described in association with intravenous overdosage.

Management: Patients should be observed closely for signs of toxicity. Adequate hydration is essential to reduce the possibility of crystal formation in urine. Haemodialysis significantly enhances the removal of aciclovir from the blood and may, therefore, be considered a management option in the event of symptomatic overdose

Contact the Poisons Information Centre on 13 11 26 for advice on management of overdose

PRESENTATION AND STORAGE CONDITIONS

Tablets

200mg: capsule shaped, biconvex, white tablets embossed “200” on one side and “ACV” on the other side. Available in PVC/PVDC/Al blister packs of 25 and 90 tablets.

400mg: capsule shaped, biconvex, white tablets embossed “400” on one side and “ACV” on the other side. Available in PVC/PVDC/Al blister packs of 56 and 100 tablets.

800mg: capsule shaped, biconvex, white tablets embossed “800” on one side and “ACV” on the other side. Available in PVC/PVDC/Al blister packs of 35 and 120 tablets.

Not all strengths or pack sizes may be marketed in Australia.

Store below 25°C. Protect from moisture. Protect from light.
Shelf life: 2 years

POISONS SCHEDULE OF THE MEDICINE

S4 (Prescription Medicine)

NAME AND ADDRESS OF THE SPONSOR

Actavis Pty Ltd
Level 5, 117 Harrington Street
The Rocks NSW 2000

DATE OF FIRST INCLUSION IN THE AUSTRALIAN REGISTER OF THERAPEUTIC GOODS (THE ARTG): 2 March 1999

DATE OF MOST RECENT AMENDMENT: 28 November 2013